1367. 二叉树中的列表

Difficulty: 中等

给你一棵以 root 为根的二叉树和一个 head 为第一个节点的链表。

如果在二叉树中,存在一条一直向下的路径,且每个点的数值恰好一一对应以 head 为首的链表中每个节点的值,那么请你返回 True ,否则返回 False

一直向下的路径的意思是:从树中某个节点开始,一直连续向下的路径。

示例 1:

1
2
3
输入:head = [4,2,8], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
输出:true
解释:树中蓝色的节点构成了与链表对应的子路径。

示例 2:

1
2
输入:head = [1,4,2,6], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
输出:true

示例 3:

1
2
3
输入:head = [1,4,2,6,8], root = [1,4,4,null,2,2,null,1,null,6,8,null,null,null,null,1,3]
输出:false
解释:二叉树中不存在一一对应链表的路径。

提示:

  • 二叉树和链表中的每个节点的值都满足 1 <= node.val <= 100
  • 链表包含的节点数目在 1100 之间。
  • 二叉树包含的节点数目在 12500 之间。

Solution

Language: ****

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isSubPath(ListNode* head, TreeNode* root) {
        if(root==NULL) return head==NULL;
        bool flag  = dfs(head,root);
        if (flag) return true;
        flag |= isSubPath(head,root->left);
        flag |= isSubPath(head,root->right);
        return flag;
    }
    bool dfs(ListNode* head,TreeNode * root) {
       
        if(head==NULL) return true;
         if(root==NULL) return false;
        if(head->val != root->val) return false;
        bool ok = false;
        ok |= dfs(head->next,root->left);
        ok |= dfs(head->next,root->right);

        return ok;
    }




};